We need to find the rotational kinetic energy of a solid sphere rolling without slipping.
Step 1: Identify the rotational kinetic energy formula.
For a solid sphere rolling without slipping:
\[
\text{Rotational KE} = \frac{1}{2} I \omega^2, \quad \omega = \frac{v}{r}, \quad I = \frac{2}{5}mr^2
\]
\[
\frac{1}{2} I \omega^2 = \frac{1}{2} \left( \frac{2}{5}mr^2 \right) \left( \frac{v^2}{r^2} \right) = \frac{1}{5} m v^2
\]
Step 2: Substitute the given values.
Given: \( m = 2 \, \text{kg} \), \( v = 5 \, \text{m/s} \).
\[
\frac{1}{5} m v^2 = \frac{1}{5} \times 2 \times (5)^2 = \frac{1}{5} \times 2 \times 25 = 10 \, \text{J}
\]
Step 3: Verify with energy ratio.
Total kinetic energy:
\[
\text{Total KE} = \frac{1}{2}mv^2 \left( 1 + \frac{2}{5} \right) = \frac{1}{2} \times 2 \times (5)^2 \times \frac{7}{5} = 35 \, \text{J}
\]
Rotational KE is \( \frac{2}{7} \) of the total:
\[
\text{Rotational KE} = \frac{2}{7} \times 35 = 10 \, \text{J}
\]
Final Answer:
\[
\boxed{10}
\]