Step 1: Use Faraday’s law in terms of charge.
Induced emf:
\[
\mathcal{E} = -n\frac{d\Phi}{dt}
\]
Current:
\[
i = \frac{\mathcal{E}}{R}
\]
Charge flowed:
\[
Q = \int i\,dt = \frac{n}{R}\int d\Phi = \frac{n}{R}\Delta\Phi
\]
Step 2: Change in flux when rotated by \(180^\circ\).
Initial flux:
\[
\Phi_i = BA
\]
Final flux after \(180^\circ\):
\[
\Phi_f = -BA
\]
So,
\[
\Delta\Phi = \Phi_f - \Phi_i = -BA - BA = -2BA
\]
Magnitude:
\[
|\Delta\Phi| = 2BA
\]
Step 3: Substitute in charge formula.
\[
Q = \frac{n}{R}(2BA)
\Rightarrow B = \frac{QR}{2nA}
\]
Final Answer:
\[
\boxed{\dfrac{QR}{2nA}}
\]