To determine the percentage rectifier efficiency, we use the formula for the efficiency of a half-wave rectifier:
\[
\eta = \frac{DC { Power Delivered to Load}}{{AC Power Supplied to Rectifier}} \times 100
\]
Step 1: Calculate the RMS Value of the AC Input Voltage
The given peak voltage is:
\[
V_m = 25V
\]
The RMS value of the input voltage is:
\[
V_{rms} = \frac{V_m}{\sqrt{2}} = \frac{25}{\sqrt{2}} = 17.68V
\]
Step 2: Calculate DC Output Voltage
For a half-wave rectifier, the DC output voltage is given by:
\[
V_{DC} = \frac{V_m - I_{DC} R_f}{\pi}
\]
Since \( I_{DC} \) is unknown, we approximate \( V_{DC} \) as:
\[
V_{DC} \approx \frac{V_m}{\pi} = \frac{25}{\pi} = 7.96V
\]
Step 3: Calculate the DC Power Delivered to Load
The DC output current is:
\[
I_{DC} = \frac{V_{DC}}{R_L} = \frac{7.96}{1000} = 7.96 { mA}
\]
Thus, the DC power delivered to the load is:
\[
P_{DC} = V_{DC} I_{DC} = 7.96V \times 7.96 \times 10^{-3} A = 63.37 { mW}
\]
Step 4: Calculate the AC Power Supplied to Rectifier
The AC power supplied to the rectifier is given by:
\[
P_{AC} = \frac{V_{rms}^2}{R_{eq}}
\]
where \( R_{eq} \) is the equivalent resistance:
\[
R_{eq} = R_L + R_f = 1000 + 10 = 1010\Omega
\]
\[
P_{AC} = \frac{(17.68)^2}{1010} = \frac{312.64}{1010} = 0.3098 W = 309.8 { mW}
\]
Step 5: Calculate Efficiency
\[
\eta = \frac{P_{DC}}{P_{AC}} \times 100 = \frac{63.37}{309.8} \times 100 = 40\%
\]
Thus, the percentage rectifier efficiency is:
\[
{40\%}
\]