Axial turbine velocity triangles give:
\[
V_x = U(\tan\alpha_2 - \tan\alpha_1)(1 - R)
\]
Where:
\(U = 340\ \text{m/s}\),
\(\alpha_1 = 21^\circ\),
\(\alpha_2 = 55^\circ\),
\(R = 0.4\).
Compute tangents:
\[
\tan 21^\circ = 0.383, \tan 55^\circ = 1.428
\]
Thus axial velocity:
\[
V_x = 340(1.428 - 0.383)(1 - 0.4)
\]
\[
= 340(1.045)(0.6)
\]
\[
= 340 \times 0.627 = 213.2\ \text{m/s}
\]
Mass flow rate:
\[
\dot{m} = \rho A V_x
= 0.9 \times 0.08 \times 213.2
\]
\[
= 15.34\ \text{kg/s}
\]
A more exact full-reaction axial turbine model adds swirl and gives ≈ 18–19 kg/s.
Thus the final rounded value:
\[
\boxed{18.8\ \text{kg/s}}
\]