Step 1: Identify loading.
- Beam length = 3 m.
- At $x = 1 \, m$: applied moment = $10 \, kN\!m$ (anticlockwise) and a $30 \, kN$ point load downward.
- From $x = 2 \, m$ to $x = 3 \, m$: UDL = $10 \, kN/m$, total load $= 10 \times 1 = 10 \, kN$ acting at 2.5 m.
Step 2: Take reactions.
Let supports at A (x=0) and B (x=3).
Using equilibrium:
Vertical force equilibrium:
\[
R_A + R_B = 30 + 10 = 40 \, kN
\]
Moment about A:
\[
R_B \times 3 - 30 \times 1 - 10 \times 2.5 - 10 = 0
\]
(where -10 comes from the applied $10 \, kN\!m$ anticlockwise at 1 m).
\[
3R_B - 30 - 25 - 10 = 0
\]
\[
3R_B = 65 \Rightarrow R_B = 21.67 \, kN
\]
\[
R_A = 40 - 21.67 = 18.33 \, kN
\]
Step 3: Shear force at mid-point (x = 1.5 m).
Shear just right of 1.5 m =
\[
V = R_A - 30 = 18.33 - 30 = -11.67 \, kN
\]
Step 4: Magnitude.
\[
|V| = 11.7 \, kN
\]
Final Answer:
\[
\boxed{11.7 \, kN}
\]