Step 1: For a given range $R$ with the same initial speed $u$, a projectile can be fired at two complementary angles $\theta$ and $(90^\circ-\theta)$.
Step 2: Time of flight for a projectile is:
\[
t=\frac{2u\sin\theta}{g}
\]
Hence,
\[
t_1=\frac{2u\sin\theta}{g}, \qquad
t_2=\frac{2u\cos\theta}{g}
\]
Step 3: Find the product $t_1t_2$:
\[
t_1t_2=\frac{4u^2\sin\theta\cos\theta}{g^2}
=\frac{2u^2\sin2\theta}{g^2}
\]
Step 4: The range of a projectile is:
\[
R=\frac{u^2\sin2\theta}{g}
\]
Step 5: Substitute $u^2\sin2\theta = Rg$:
\[
t_1t_2=\frac{2Rg}{g^2}=\frac{2R}{g}
\]