Step 1: Use the formula for cardinality of union of two sets:
\[
n(A\cup B)=n(A)+n(B)-n(A\cap B)
\]
Step 2: Given:
\[
n(A)=3,\quad n(B)=6
\]
Step 3: The intersection \(A\cap B\) can have:
\[
0 \le n(A\cap B) \le 3
\]
(since the smaller set has 3 elements)
Step 4: Find minimum value of \(n(A\cup B)\):
\[
n(A\cup B)_{\min}=3+6-3=6
\]
Step 5: Find maximum value of \(n(A\cup B)\):
\[
n(A\cup B)_{\max}=3+6-0=9
\]
Step 6: Hence,
\[
6 \le n(A\cup B) \le 9
\]