The pressure difference in a rotating flow can be found using Bernoulli's equation for rotating flows:
\[
\Delta P = -\frac{1}{2} \rho \left( |\vec{V}|^2 \right).
\]
At the point \( (6, 8) \), the velocity magnitude \( |\vec{V}| \) is:
\[
|\vec{V}| = \sqrt{(a y)^2 + (b x)^2} = \sqrt{(10 \times 8)^2 + (20 \times 6)^2} = \sqrt{6400 + 14400} = \sqrt{20800} \approx 144.22 \, \text{m/s}.
\]
Now, compute the pressure difference:
\[
\Delta P = -\frac{1}{2} \times 1.0 \, \text{kg/m}^3 \times (144.22)^2 = -\frac{1}{2} \times 1.0 \times 20880.3 = -10440.15 \, \text{Pa} = -10.44 \, \text{kPa}.
\]
The pressure at \( (x, y) = (6, 8) \) is:
\[
P = 100 \, \text{kPa} - 10.44 \, \text{kPa} = 89.56 \, \text{kPa}.
\]
Thus, the pressure is approximately:
\[
\boxed{90\ \text{kPa}}.
\]