Step 1: Use energy conservation.
Rod rotates about lower end \(P\) without slipping.
When released from vertical, centre of mass falls by height:
\[
\Delta h = \frac{l}{2}
\]
Loss in potential energy:
\[
\Delta U = mg\frac{l}{2}
\]
Step 2: Convert into rotational kinetic energy.
Rotational KE about point \(P\):
\[
KE = \frac{1}{2}I_P\omega^2
\]
Moment of inertia of rod about end:
\[
I_P = \frac{1}{3}ml^2
\]
So:
\[
mg\frac{l}{2} = \frac{1}{2}\left(\frac{1}{3}ml^2\right)\omega^2
\]
Step 3: Solve for angular velocity \(\omega\).
Cancel \(m\):
\[
g\frac{l}{2} = \frac{1}{6}l^2\omega^2
\]
\[
3gl = l^2\omega^2
\Rightarrow \omega^2 = \frac{3g}{l}
\Rightarrow \omega = \sqrt{\frac{3g}{l}}
\]
Step 4: Velocity of upper end.
Upper end is at distance \(l\) from pivot:
\[
v = \omega l = l\sqrt{\frac{3g}{l}} = \sqrt{3gl}
\]
Final Answer:
\[
\boxed{\sqrt{3gl}}
\]