Step 1: Let the length of the rod be
\[
L = 50\ \text{cm} = 0.5\ \text{m}
\]
Step 2: The centre of mass of the rod is at a distance $\dfrac{L}{2}$ from the pivot.
The vertical fall of the centre of mass when the rod moves from $30^\circ$ to the horizontal is:
\[
h = \frac{L}{2}\sin 30^\circ = \frac{L}{4}
\]
Step 3: Loss of potential energy:
\[
\text{P.E.} = mg\frac{L}{4}
\]
Step 4: Gain in rotational kinetic energy:
\[
\text{K.E.} = \frac{1}{2}I\omega^2
\]
For a rod about one end,
\[
I = \frac{1}{3}mL^2
\]
Step 5: Apply conservation of energy:
\[
mg\frac{L}{4} = \frac{1}{2}\cdot\frac{1}{3}mL^2\omega^2
\]
Step 6: Simplify:
\[
\frac{mgL}{4} = \frac{mL^2\omega^2}{6}
\]
\[
\omega^2 = \frac{3g}{2L}
\]
Step 7: Substitute $L=0.5\ \text{m}$:
\[
\omega^2 = \frac{3g}{1} = 3g
\]
Taking $g \approx 10\ \text{m s}^{-2}$,
\[
\omega = \sqrt{30}\ \text{rad s}^{-1}
\]