Step 1: Break the 60 N inclined force into components.
The $60 \, N$ force at $45^\circ$:
\[
F_x = 60 \cos 45^\circ = 60 \times 0.707 = 42.43 \, N
\]
\[
F_y = 60 \sin 45^\circ = 42.43 \, N
\]
Step 2: Write down all forces acting.
- Downward force: $30 \, N$ at top.
- Horizontal force: $40 \, N$ (to the right).
- Inclined force components: $-42.43 \, N$ (horizontal, to the left), $+42.43 \, N$ (vertical upward).
Step 3: Compute net forces (for reference).
Horizontal resultant:
\[
F_x = 40 - 42.43 = -2.43 \, N (\text{leftward})
\]
Vertical resultant:
\[
F_y = -30 + 42.43 = 12.43 \, N (\text{upward})
\]
But the problem asks only for the {equivalent couple moment $M$}.
Step 4: Take moments about bottom of rod.
- 30 N downward force at $6 \, m$ above base:
\[
M_{30} = 30 \times 6 = 180 \, N\!m \; (\text{clockwise})
\]
- 40 N horizontal force at $2 \, m$ above base:
\[
M_{40} = 40 \times 2 = 80 \, N\!m \; (\text{anticlockwise})
\]
- Inclined 60 N force at $5 \, m$ above base:
Vertical component $42.43 \, N$ at 5 m → clockwise:
\[
M_{60v} = 42.43 \times 5 = 212.15 \, N\!m \; (\text{clockwise})
\]
Horizontal component passes through line of action → no moment.
Step 5: Net moment.
\[
M = (180 + 212.15) - 80 = 312.15 \, N\!m
\]
Final Answer:
\[
\boxed{312.2 \, N\!m}
\]