An alternating current is represented by the equation, $\mathrm{i}=100 \sqrt{2} \sin (100 \pi \mathrm{t})$ ampere. The RMS value of current and the frequency of the given alternating current are
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
A simplified small-signal equivalent circuit of a BJT-based amplifier is given below.
The small-signal voltage gain \( \frac{V_o}{V_S} \) (in V/V) is _________.
Let \( a \) be an integer multiple of 8. If \( S \) is the set of all possible values of \( a \) such that the line \( 6x + 8y + a = 0 \) intersects the circle \( x^2 + y^2 - 4x - 6y + 9 = 0 \) at two distinct points, then the number of elements in \( S \) is:
If the ratio of the terms equidistant from the middle term in the expansion of \((1 + x)^{12}\) is \(\frac{1}{256}\), then the sum of all the terms of the expansion \((1 + x)^{12}\) is:
A 3 kg block is connected as shown in the figure. Spring constants of two springs \( K_1 \) and \( K_2 \) are 50 Nm\(^{-1}\) and 150 Nm\(^{-1}\) respectively. The block is released from rest with the springs unstretched. The acceleration of the block in its lowest position is ( \( g = 10 \) ms\(^{-2}\) )