The given figure shows six equal amount of charges, q, at the vertices of a regular hexagon.

Where,
Charge, q = 5 µC = 5 × 10−6 C
Side of the hexagon, l = AB = BC = CD = DE = EF = FA = 10 cm
Distance of each vertex from centre O, d = 10 cm
Electric potential at point O, \(v=\frac{1}{4πe_0}.\frac{6xq}{d}\)
Where,
Where, = Permittivity of free space and \(\frac{1}{4pi_0}\)= 9 ×10-9 Nm2 c-2
\(v=\frac{9x10^9x6x5x10^-6}{0.1}=2.7x10^6V\)
Therefore, the potential at the centre of the hexagon is 2.7 × 106 V
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements, choose the most appropriate answer from the options given below:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below:

“One of these days you’re going to talk yourself into a load of trouble,” her father said aggressively. What do you learn about Sophie’s father from these lines? (Going Places)
Write a letter to the editor of a local newspaper expressing your concerns about the increasing “Pollution levels in your city”. You are an environmentalist, Radha/Rakesh, 46, Peak Colony, Haranagar. You may use the following cues along with your own ideas: 
The potential of a point is defined as the work done per unit charge that results in bringing a charge from infinity to a certain point.
Some major things that we should know about electric potential:
The ability of a capacitor of holding the energy in form of an electric charge is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is “farads”.
Read More: Electrostatic Potential and Capacitance
Both the Capacitors C1 and C2 can easily get connected in series. When the capacitors are connected in series then the total capacitance that is Ctotal is less than any one of the capacitor’s capacitance.
Both Capacitor C1 and C2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is Ctotal is any one of the capacitor’s capacitance.