Step 1: Interpret the slope of the base.
“Every $2.6$ m along the inclined base gives $1$ m rise” $⇒ \sin\theta=\dfrac{1}{2.6}=\dfrac{5}{13}$.
Thus $\cos\theta=\dfrac{12}{13}$ and $\tan\theta=\dfrac{\sin\theta}{\cos\theta}=\dfrac{5}{12}$.
Step 2: Depth at the deep end.
Over the horizontal length $L=48$ m, vertical rise \(=\ L\tan\theta=48 \dfrac{5}{12}=20\) m.
Shallow depth is \(1\) m, so deep depth \(=1+20=21\) m.
Step 3: Volume of the pool.
Depth varies linearly from \(1\) to \(21\) along the length, hence average depth \(=\dfrac{1+21}{2}=11\) m.
\[
V=\text{(length)}\times\text{(width)}\times\text{Average depth)}
=48\times 20\times 11= \boxed{10560\ \text{m}^3}.
\]