Step 1: Formula for viscous force.
The viscous force \( F \) is given by Stokes' law:
\[
F = 6 \pi \eta r v
\]
where \( \eta \) is the viscosity, \( r \) is the radius of the drop, and \( v \) is the velocity.
Step 2: Substituting the values.
Given: \( \eta = 8 \times 10^{-5} \, \text{poise} \), \( r = 0.3 \, \text{mm} = 0.3 \times 10^{-3} \, \text{m} \), and \( v = 1 \, \text{m/s} \), we calculate the force:
\[
F = 6 \pi (8 \times 10^{-5}) (0.3 \times 10^{-3}) (1) = 16.95 \times 10^{-5} \, \text{dyne}
\]
Final Answer:
\[
\boxed{16.95 \times 10^{-5} \, \text{dyne}}
\]