First calculate the amount left after $n$ half-lives and then time taken. $\frac{N_{t}}{N_{0}}=\left(\frac{1}{2}\right)^{n}$
where, $N_{t}=1$ amount left after expiry $n$ half lives $=1$
$N_{0}=$ initial amount $=64$
$\therefore \frac{1}{64}=\left(\frac{1}{2}\right)^{n}$
or $\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{2}\right)^{n}$
$\therefore n=6$
Given, $t_{1 / 2}=2 h$
$\therefore$ Time taken $(T)=t_{1 / 2} \times n=2 \times 6$
$=12\, h$