Given that the energy of the pulse \( E = P \times t \), where \( P \) is the power of the pulse and \( t \) is the duration:
\[
E = 60 \, \text{mW} \times 50 \, \text{ns} = 60 \times 10^{-3} \, \text{W} \times 50 \times 10^{-9} \, \text{s} = 3 \times 10^{-15} \, \text{J}
\]
Now, the momentum \( p \) of the object is given by the equation \( p = \frac{E}{c} \), where \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light:
\[
p = \frac{3 \times 10^{-15} \, \text{J}}{3 \times 10^8 \, \text{m/s}} = 1.0 \times 10^{-16} \, \text{kg m/s}
\]
Thus, the final momentum of the object is \( 1.0 \times 10^{-16} \, \text{kg m/s} \).