Step 1: De Broglie relation.
\[
\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m q V}}
\]
where $m$ = mass, $q$ = charge, $V$ = accelerating potential.
Step 2: For proton.
\[
\lambda_p = \frac{h}{\sqrt{2 m_p e V}}
\]
Step 3: For $\alpha$-particle.
Mass $m_\alpha = 4m_p$, charge $q_\alpha = 2e$.
\[
\lambda_\alpha = \frac{h}{\sqrt{2 (4m_p)(2e)V}} = \frac{h}{\sqrt{16 m_p e V}}
\]
Step 4: Ratio.
\[
\frac{\lambda_p}{\lambda_\alpha} = \frac{\dfrac{h}{\sqrt{2 m_p e V}}}{\dfrac{h}{\sqrt{16 m_p e V}}}
= \sqrt{\frac{16}{2}} = \sqrt{8} = 2.83
\]
If approximated as integer ratio: $\dfrac{\lambda_p}{\lambda_\alpha} \approx 3$.
Step 5: Conclusion.
The ratio $\lambda_p : \lambda_\alpha \approx 2.8 : 1 \, \approx 3 : 1$.