The de Broglie wavelength \( \lambda \) of a particle is given by the formula:
\[
\lambda = \frac{h}{p}
\]
Where:
- \( h \) is Planck's constant (\(6.626 \times 10^{-34} \, \text{J} . \text{s}\)),
- \( p \) is the momentum of the particle.
The momentum \( p \) of a particle accelerated by a potential difference \( V \) is given by:
\[
p = \sqrt{2m e V}
\]
Where:
- \( m \) is the mass of the particle,
- \( e \) is the charge of the particle (\( 1.6 \times 10^{-19} \, \text{C} \)),
- \( V \) is the potential difference.
Now, we calculate the momentum for both the proton and the \( \alpha \)-particle.
1. For the proton:
- Mass of proton \( m_p = 1.67 \times 10^{-27} \, \text{kg} \),
- Charge of proton \( e_p = 1.6 \times 10^{-19} \, \text{C} \).
The momentum of the proton is:
\[
p_p = \sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-19} \times V}
\]
2. For the \( \alpha \)-particle:
- Mass of \( \alpha \)-particle \( m_{\alpha} = 4 \times 1.67 \times 10^{-27} \, \text{kg} = 6.68 \times 10^{-27} \, \text{kg} \),
- Charge of \( \alpha \)-particle \( e_{\alpha} = 2 \times 1.6 \times 10^{-19} \, \text{C} \).
The momentum of the \( \alpha \)-particle is:
\[
p_{\alpha} = \sqrt{2 \times 6.68 \times 10^{-27} \times 2 \times 1.6 \times 10^{-19} \times V}
\]
3. Ratio of the de Broglie wavelengths:}
Since the de Broglie wavelength is inversely proportional to the momentum, the ratio of the wavelengths is:
\[
\frac{\lambda_p}{\lambda_{\alpha}} = \frac{p_{\alpha}}{p_p} = \frac{\sqrt{2 \times 6.68 \times 10^{-27} \times 2 \times 1.6 \times 10^{-19} \times V}}{\sqrt{2 \times 1.67 \times 10^{-27} \times 1.6 \times 10^{-19} \times V}}
\]
Simplifying the ratio:
\[
\frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{6.68 \times 2}{1.67}} = \sqrt{8} = 2.83
\]
Thus, the ratio of the de Broglie wavelengths is approximately 2.83.