Let the original rectangle be \(L \times B\) with area \(LB\). The first largest square cut is \(B \times B\). Remaining rectangle is \((L-B) \times B\). Next largest square from this is of side \(L-B\) (since \(L < 2B \Rightarrow L-B\)).
Perimeter ratio: \[ \frac{2[(2B-L)+(L-B)]}{2(L+B)} = \frac{2B}{2(L+B)} = \frac{B}{L+B} = \frac{3}{8} \Rightarrow L = \frac{5}{3}B \]
Original area: \[ LB = \tfrac{5}{3}B^2 \]
First square area: \[ B^2 \]
Second square area: \[ (L-B)^2 = \left(\tfrac{2}{3}B\right)^2 = \tfrac{4}{9}B^2 \]
Remaining rectangle area: \[ (2B-L)(L-B) = \left(\tfrac{1}{3}B\right)\left(\tfrac{2}{3}B\right) = \tfrac{2}{9}B^2 \]
Cost price at ₹1000/sq ft: \[ C = 1000 \cdot \tfrac{5}{3}B^2 \]
Selling prices: ₹1200 for the first square and ₹1150 for the second square. Let \(x\) be the price for the remaining part.
Total revenue: \[ R = B^2 \left( 1200 + \tfrac{4}{9} \cdot 1150 + \tfrac{2}{9}x \right) \]
Overall profit \(10\%\): \[ R = 1.1C = \tfrac{5500}{3}B^2 \]
Hence, \[ 1200 + \tfrac{4600}{9} + \tfrac{2}{9}x = \tfrac{5500}{3} \] \[ \tfrac{15400 + 2x}{9} = \tfrac{16500}{9} \] \[ 2x = 1100 \quad \Rightarrow \quad x = 550 \]
The remaining land must be sold at \[ \boxed{₹ \; 550 \; \text{per sq ft}} \]
Match the following airlines with the countries where they are headquartered.
| Airlines | Countries |
|---|---|
| 1. AirAsia | A. Singapore |
| 2. AZAL | B. South Korea |
| 3. Jeju Air | C. Azerbaijan |
| 4. Indigo | D. India |
| 5. Tigerair | E. Malaysia |
Match the following authors with their respective works.
| Authors | Books |
|---|---|
| 1. Andy Weir | A. Dune |
| 2. Cixin Liu | B. The Time Machine |
| 3. Stephen Hawking | C. The Brief History of Time |
| 4. HG Wells | D. The Martian |
| 5. Frank Herbert | E. The Three Body Problem |