The probability that the player does not hit the bottle on a given shot is:
The probability that the player misses all 4 shots is:
\[ 0.9 \times 0.8 \times 0.65 \times 0.55 = 0.2874 \]
Thus, the probability that the player hits the bottle in at least one of the four shots is:
\[ 1 - 0.2874 = 0.7426 \]
Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.