Let the selling price (SP) of each item be \( 100 \, \text{units} \).
Step 1: Calculate the cost price (CP) for each item.
For the first item, there is a \( 10\% \) profit:
\[
\text{CP}_1 = \frac{\text{SP}_1}{1.1} = \frac{100}{1.1} \approx 90.91 \, \text{units}.
\]
For the second item, there is a \( 10\% \) loss:
\[
\text{CP}_2 = \frac{\text{SP}_2}{0.9} = \frac{100}{0.9} \approx 111.11 \, \text{units}.
\]
Step 2: Compute the total cost price and total selling price.
\[
\text{Total CP} = \text{CP}_1 + \text{CP}_2 = 90.91 + 111.11 = 202.02 \, \text{units}.
\]
\[
\text{Total SP} = 100 + 100 = 200 \, \text{units}.
\]
Step 3: Determine the overall profit or loss.
\[
\text{Loss} = \text{Total CP} - \text{Total SP} = 202.02 - 200 = 2.02 \, \text{units}.
\]
\[
\text{Loss percentage} = \frac{\text{Loss}}{\text{Total CP}} \times 100 = \frac{2.02}{202.02} \times 100 \approx 1\%.
\]
Final Answer:
\[
\boxed{\text{1\% loss}}
\]