Step 1: Understanding the Concept:
The potential \(V(x)\) experienced by a particle can be determined from its wavefunction \(\psi(x,t)\) using the time-dependent Schrödinger equation (TDSE). Since the given wavefunction is a product of a spatial part and a time-dependent part, it represents a stationary state. This allows us to use the time-independent Schrödinger equation (TISE) to find \(V(x)\).
Step 2: Key Formula or Approach:
The time-dependent Schrödinger equation is:
\[ i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x,t) \]
For a stationary state, \(\psi(x,t) = \phi(x) e^{-iEt/\hbar}\). The equation simplifies to the TISE:
\[ \left[ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] \phi(x) = E \phi(x) \]
We can rearrange this to solve for \(V(x)\):
\[ V(x) = E + \frac{\hbar^2}{2m} \frac{1}{\phi(x)} \frac{d^2\phi(x)}{dx^2} \]
Step 3: Detailed Explanation:
The given wavefunction is \(\psi(x,t) = \alpha x^2 e^{-\beta x} e^{i\gamma t/\hbar}\).
Let's compare the time-dependent part \(e^{i\gamma t/\hbar}\) with the standard form \(e^{-iEt/\hbar}\).
We have \(-iEt/\hbar = i\gamma t/\hbar\), which implies \(E = -\gamma\).
The spatial part of the wavefunction is \(\phi(x) = \alpha x^2 e^{-\beta x}\).
Now we need to find the second derivative of \(\phi(x)\) with respect to x.
First derivative:
\[ \frac{d\phi}{dx} = \frac{d}{dx} (\alpha x^2 e^{-\beta x}) = \alpha \left[ (2x)e^{-\beta x} + x^2(-\beta e^{-\beta x}) \right] = \alpha e^{-\beta x} (2x - \beta x^2) \]
Second derivative:
\[ \frac{d^2\phi}{dx^2} = \frac{d}{dx} \left[ \alpha e^{-\beta x} (2x - \beta x^2) \right] \]
\[ = \alpha \left[ (-\beta e^{-\beta x})(2x - \beta x^2) + e^{-\beta x}(2 - 2\beta x) \right] \]
\[ = \alpha e^{-\beta x} \left[ -2\beta x + \beta^2 x^2 + 2 - 2\beta x \right] \]
\[ = \alpha e^{-\beta x} (2 - 4\beta x + \beta^2 x^2) \]
Now, substitute this into the rearranged TISE to find \(V(x)\):
\[ V(x) = E + \frac{\hbar^2}{2m} \frac{1}{\phi(x)} \frac{d^2\phi(x)}{dx^2} \]
\[ V(x) = -\gamma + \frac{\hbar^2}{2m} \frac{1}{\alpha x^2 e^{-\beta x}} \left[ \alpha e^{-\beta x} (2 - 4\beta x + \beta^2 x^2) \right] \]
Cancel the common terms \(\alpha e^{-\beta x}\):
\[ V(x) = -\gamma + \frac{\hbar^2}{2m} \frac{2 - 4\beta x + \beta^2 x^2}{x^2} \]
Finally, split the fraction:
\[ V(x) = -\gamma + \frac{\hbar^2}{2m} \left( \frac{2}{x^2} - \frac{4\beta}{x} + \beta^2 \right) \]
Step 4: Final Answer:
The potential \(V(x)\) is \(-\gamma + \frac{\hbar^2}{2m} \left( \frac{2}{x^2} - \frac{4\beta}{x} + \beta^2 \right)\). This matches option (A).