We are asked to calculate the work done by a force \(\vec{F}\) over a displacement \(\vec{dS}\). The formula for work is:
\(W = \vec{F} \cdot \vec{dS}\)
The force \(\vec{F}\) and displacement \(\vec{dS}\) are given as:
Now, let's simplify the displacement vector \(\vec{dS}\):
\(\vec{dS} = (4 \hat{j} + 3 \hat{k}) - (-2 \hat{i} + 5 \hat{j})\)
First, distribute the negative sign:
\(\vec{dS} = 4 \hat{j} + 3 \hat{k} + 2 \hat{i} - 5 \hat{j}\)
Now, simplify the terms:
\(\vec{dS} = 2 \hat{i} - \hat{j} + 3 \hat{k}\)
Next, we calculate the dot product of the force and displacement vectors:
\(W = (4 \hat{i} + 3 \hat{j}) \cdot (2 \hat{i} - \hat{j} + 3 \hat{k})\)
To compute the dot product, we multiply corresponding components and sum them:
So, the dot product is:
\(W = 8 - 3 + 0 = 5 \, \text{J}\)
The work done is 5 Joules (J).
Given:
- Initial position: $\vec{r}_1 = -2 \hat{i} + 5 \hat{j}$
- Final position: $\vec{r}_2 = 4 \hat{j} + 3 \hat{k}$
- Force applied: $\vec{F} = 4 \hat{i} + 3 \hat{j}$
Step 1: Find displacement vector
\(\vec{d} = \vec{r}_2 - \vec{r}_1 = (4 \hat{j} + 3 \hat{k}) - (-2 \hat{i} + 5 \hat{j}) = 2 \hat{i} -1 \hat{j} + 3 \hat{k}\)
Step 2: Work done = dot product of force and displacement
\(W = \vec{F} \cdot \vec{d} = (4 \hat{i} + 3 \hat{j}) \cdot (2 \hat{i} -1 \hat{j} + 3 \hat{k})\)
\(W = 4 \cdot 2 + 3 \cdot (-1) + 0 \cdot 3 = 8 - 3 + 0 = \boxed{5\,J}\)
Final Answer:
\(\boxed{5\,J}\)
In a Vernier caliper, \(N+1\) divisions of vernier scale coincide with \(N\) divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is: