A particle is executing simple harmonic motion with instantaneous displacement:
$$
x = A \sin^2\left( \omega t - \frac{\pi}{4} \right)
$$
The time period of oscillation of the particle is:
Show Hint
Use identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \) to convert to standard SHM form and determine period.
Given:
\[
x = A \sin^2\left( \omega t - \frac{\pi}{4} \right)
\]
Using identity:
\[
\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}
\Rightarrow x = \frac{A}{2} \left[1 - \cos\left(2\omega t - \frac{\pi}{2} \right) \right]
\]
This is a cosine function with angular frequency \( 2\omega \), hence:
\[
T = \frac{2\pi}{2\omega} = \frac{\pi}{\omega}
\]