Question:

A particle is executing simple harmonic motion with instantaneous displacement: $$ x = A \sin^2\left( \omega t - \frac{\pi}{4} \right) $$ The time period of oscillation of the particle is:

Show Hint

Use identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \) to convert to standard SHM form and determine period.
Updated On: May 20, 2025
  • \( \dfrac{2\pi}{\omega} \)
  • \( \dfrac{\pi}{\omega} \)
  • \( \dfrac{\pi}{2\omega} \)
  • \( \dfrac{\omega}{2\pi} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given: \[ x = A \sin^2\left( \omega t - \frac{\pi}{4} \right) \] Using identity: \[ \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \Rightarrow x = \frac{A}{2} \left[1 - \cos\left(2\omega t - \frac{\pi}{2} \right) \right] \] This is a cosine function with angular frequency \( 2\omega \), hence: \[ T = \frac{2\pi}{2\omega} = \frac{\pi}{\omega} \]
Was this answer helpful?
0
0

Top Questions on Oscillations

View More Questions