Step 1: Conservation of momentum.
For an elastic collision, momentum is conserved. The total momentum before and after the collision is equal:
\[
m v_A = m v_A' + 2m v_B.
\]
Simplifying, we get
\[
v_A = v_A' + 2v_B. \quad \text{(1)}
\]
Step 2: Conservation of kinetic energy.
For an elastic collision, the total kinetic energy is also conserved:
\[
\frac{1}{2} m v_A^2 = \frac{1}{2} m v_A'^2 + \frac{1}{2} 2m v_B^2.
\]
Simplifying, we get
\[
v_A^2 = v_A'^2 + v_B^2. \quad \text{(2)}
\]
Step 3: Solve the system of equations.
From equation (1),
\[
v_A' = v_A - 2v_B.
\]
Substitute this into equation (2):
\[
v_A^2 = (v_A - 2v_B)^2 + v_B^2.
\]
Expanding:
\[
v_A^2 = v_A^2 - 4 v_A v_B + 4v_B^2 + v_B^2 = v_A^2 - 4 v_A v_B + 5v_B^2.
\]
Simplifying:
\[
0 = -4 v_A v_B + 5v_B^2 \Rightarrow v_A = \frac{5}{4} v_B.
\]
Thus,
\[
v_A'^2 = \left(\frac{5}{4} v_B - 2v_B\right)^2 = \left(\frac{-3}{4} v_B\right)^2 = \frac{9}{16} v_B^2.
\]
Step 4: Final result.
Therefore, \( k = \frac{9}{16} \).
Final Answer: The value of \( k \) is \( \boxed{\frac{9}{16}} \).