The intensity of light transmitted through an absorbing medium follows Beer–Lambert law:
\[
I = I_0 e^{-\alpha x}
\]
where
$\alpha =$ absorption coefficient,
$x =$ thickness of glass.
Convert thickness to cm:
\[
x = 5\ \text{mm} = 0.5\ \text{cm}
\]
Two extreme absorption coefficients:
\[
\alpha_{min} = 0.3\ \text{cm}^{-1},\qquad
\alpha_{max} = 1.0\ \text{cm}^{-1}
\]
Transmitted fractions:
\[
T_{max} = e^{-\alpha_{min} x} = e^{-0.3 \times 0.5} = e^{-0.15}
\]
\[
T_{min} = e^{-\alpha_{max} x} = e^{-1.0 \times 0.5} = e^{-0.5}
\]
Required ratio:
\[
R = \frac{T_{max}}{T_{min}}
= \frac{e^{-0.15}}{e^{-0.5}}
= e^{0.35}
\]
\[
R = e^{0.35} = 1.419
\]
Rounded to two decimals:
\[
\boxed{1.42}
\]