Step 1: Express price and revenue as functions of $Q$.
From demand, \(P=1+\dfrac{100}{Q}\). Hence revenue \(R(Q)=P . Q=\left(1+\dfrac{100}{Q}\right)Q=Q+100\).
Marginal revenue \(MR=\dfrac{dR}{dQ}=1\).
Step 2: Obtain MC from AVC.
\(AVC=\dfrac{4}{\sqrt{Q}}\Rightarrow VC(Q)=AVC . Q=\dfrac{4}{\sqrt{Q}}\,Q=4\sqrt{Q}\).
Thus marginal cost \(MC=\dfrac{dVC}{dQ}=\dfrac{d}{dQ}(4\sqrt{Q})=\dfrac{2}{\sqrt{Q}}\).
Step 3: Profit maximization $MR=MC$.
\(1=\dfrac{2}{\sqrt{Q}}\Rightarrow \sqrt{Q}=2\Rightarrow Q^\ast=4\).
Step 4: Compute the price.
\(P^\ast=1+\dfrac{100}{Q^\ast}=1+\dfrac{100}{4}=26\).
Check: \(P^\ast>AVC(4)=\dfrac{4}{2}=2\) so operating is optimal.
Final Answer: 26
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate