Step 1: Express price and revenue as functions of $Q$.
From demand, \(P=1+\dfrac{100}{Q}\). Hence revenue \(R(Q)=P . Q=\left(1+\dfrac{100}{Q}\right)Q=Q+100\).
Marginal revenue \(MR=\dfrac{dR}{dQ}=1\).
Step 2: Obtain MC from AVC.
\(AVC=\dfrac{4}{\sqrt{Q}}\Rightarrow VC(Q)=AVC . Q=\dfrac{4}{\sqrt{Q}}\,Q=4\sqrt{Q}\).
Thus marginal cost \(MC=\dfrac{dVC}{dQ}=\dfrac{d}{dQ}(4\sqrt{Q})=\dfrac{2}{\sqrt{Q}}\).
Step 3: Profit maximization $MR=MC$.
\(1=\dfrac{2}{\sqrt{Q}}\Rightarrow \sqrt{Q}=2\Rightarrow Q^\ast=4\).
Step 4: Compute the price.
\(P^\ast=1+\dfrac{100}{Q^\ast}=1+\dfrac{100}{4}=26\).
Check: \(P^\ast>AVC(4)=\dfrac{4}{2}=2\) so operating is optimal.
Final Answer: 26
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________