Step 1 (Variables).
Let each vessel contain $x$ litres $\Rightarrow$ total quantity $=10x$ litres.
Let cost price per litre be ₹ $c$ $\Rightarrow$ total cost $C=10x\,c$.
Step 2 (Loss at ₹ 5 per litre).
Revenue at ₹ 5 per litre: $R_1=5\cdot 10x=50x$.
Loss ₹ 200 means $C-R_1=200$:
\[
10x\,c-50x=200 \Rightarrow x(c-5)=20 \Rightarrow \boxed{\,c-5=\dfrac{20}{x}\,}. \tag{1}
\]
Step 3 (Gain at ₹ 6 per litre).
Revenue at ₹ 6 per litre: $R_2=6\cdot 10x=60x$.
Gain ₹ 150 means $R_2-C=150$:
\[
60x-10x\,c=150 \Rightarrow 6-c=\frac{15}{x} \Rightarrow \boxed{\,c=6-\dfrac{15}{x}\,}. \tag{2}
\]
Step 4 (Solve for $x$).
From (1): $c=5+\dfrac{20}{x}$. Equate with (2):
\[
5+\frac{20}{x}=6-\frac{15}{x}
\Rightarrow \frac{20}{x}+\frac{15}{x}=1
\Rightarrow \frac{35}{x}=1
\Rightarrow \boxed{x=35}.
\]
Step 5 (Answer).
Each vessel contains $\boxed{35\ \text{litres}}$.