Step 1: Convert work function to joules.
\[
W = 2.0 \, eV = 2.0 \times 1.6 \times 10^{-19} J = 3.2 \times 10^{-19} J
\]
Step 2: Threshold wavelength.
\[
\lambda_{th} = \frac{hc}{W} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{3.2 \times 10^{-19}}
\]
\[
\lambda_{th} \approx 6.2 \times 10^{-7} m = 6200 \, \text{\AA}
\]
Step 3: Energy of incident photons.
\[
E = \frac{hc}{\lambda} = \frac{1240}{500} \, eV = 2.48 \, eV
\]
Step 4: Maximum kinetic energy.
\[
K_{max} = E - W = 2.48 - 2.0 = 0.48 \, eV
\]
Step 5: Stopping potential.
\[
eV_s = K_{max} \quad \Rightarrow \quad V_s = 0.48 \, V
\]
Step 6: Conclusion.
(i) Threshold wavelength $\lambda_{th} = 6200 \, \text{\AA}$
(ii) Stopping potential $V_s = 0.48 \, V$