Step 1: The induced emf in a rotating disc is given by the formula:
\[
\mathcal{E} = \dfrac{1}{2} B \omega r^2,
\]
where \( B \) is the magnetic field, \( \omega \) is the angular velocity, and \( r \) is the radius of the disc.
Step 2: Substituting the given values \( B = 0.5 \, \text{Wb/m}^2 \), \( \omega = 60 \, \text{rad/s} \), and \( r = 1 \, \text{m} \), we get:
\[
\mathcal{E} = \dfrac{1}{2} \times 0.5 \times 60 \times 1^2 = 6 \, \text{V}.
\]
Final Answer:
\[
\boxed{6 \, \text{V}}
\]