Volume of the cylinder, $V=\pi r^{2}L$
Volumetric strain $=\frac{\Delta V}{V}$ $=\frac{\Delta\left(\pi r^{2} L\right)}{\pi r^{2} L}$
$\frac{\Delta V}{V}$ $=\frac{\pi r^{2}\Delta L+2\pi r L\Delta r}{\pi r^{2}L}$
$=\frac{\Delta L}{L}$ $+\frac{2 \Delta r}{r}$ $\quad$$\ldots\left(i\right)$
Poisson?s ratio, $\sigma$ $=-\frac{\left(\Delta r/ r\right)}{\left(\Delta L/ L\right)}$
or $\quad$ $\frac{\Delta r}{r}$ $=-\frac{\sigma\Delta L}{L}$
On substituting this value of $ \frac{\Delta r}{r}$ in E $\left(i\right)$, we get
$\frac{\Delta V}{V}$ $=\frac{\Delta L}{L}\left(1-2\sigma\right)$ $\quad\ldots\left(ii\right)$
Young?s modulus, $Y=\frac{\left(F /\pi r^{2}\right)}{\Delta L /L} $or $\frac{\Delta L}{L}=\frac{F}{\pi r ^{2}Y}$
On substituting this value of $\frac{\Delta L}{L}$ in E $\left(ii\right)$, we get
$\frac{\Delta V}{V}$ $=\frac{F}{\pi r^{2} Y}$ $\left(1-2\sigma\right)$
$\frac{\Delta V}{\pi r^{2} L}$ $=\frac{F}{\pi r^{2} Y}$ $\left(1-2\sigma\right)$
$\Delta V$ $=\frac{FL}{Y}$ $\left(1-2\sigma\right)$