To solve this problem, we need to find the probability that at least one junior professor is selected when 3 professors are chosen from a group of 6 senior professors and 4 junior professors.
Let's break down the solution step-by-step:
Hence, the probability that at least one junior professor would get selected is \(\frac{5}{6}\).
Correct option: \(\frac{5}{6}\).
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :
Venture Capital financing is _______
(A) Type of financing by venture capital.
(B) It is private equity capital provided as seed funding to early stage.
(C) Investment in blue chip companies for assured return.
(D) It is a high risk investment made with an intention of creating high returns.
(E) Done in technology projects only.
Choose the correct answer from the options given below :