Step 1: Use the formula for magnetic field at the center of a circular loop.
The magnetic field at the center of a circular current-carrying wire is given by:
\[
B = \frac{\mu_0 I}{2R}
\]
where:
- \( B \) is the magnetic field (in Tesla),
- \( \mu_0 = 4\pi \times 10^{-7} \, \text{Tm/A} \) (permeability of free space),
- \( I = 0.2 \, \text{A} \) (current),
- \( R = 0.1 \, \text{m} \) (radius).
Step 2: Substitute the values into the formula.
\[
B = \frac{4\pi \times 10^{-7} \times 0.2}{2 \times 0.1} = \frac{4\pi \times 0.2 \times 10^{-7}}{0.2} = 4\pi \times 10^{-7} \, \text{T}
\]
Step 3: Conclusion.
The magnetic field intensity at the center of the circular wire is \( \boxed{4\pi \times 10^{-7} \, \text{T}} \).