Step 1: Find the radius of the disc.
Given diameter $=0.5\,\text{m}$,
\[
R=\frac{0.5}{2}=0.25\,\text{m}
\]
Step 2: The rod forms a tangent in the plane of the disc.
Hence, the axis is parallel to a diameter of the disc and is at a distance $R$ from the centre.
Step 3: Moment of inertia of a thin disc about a diameter:
\[
I_{\text{diameter}}=\frac{1}{4}MR^2
\]
Step 4: Use the parallel axis theorem to find the moment of inertia about the tangent:
\[
I = I_{\text{diameter}} + MR^2
= \left(\frac{1}{4}+1\right)MR^2
= \frac{5}{4}MR^2
\]
Step 5: Radius of gyration $k$ is defined by:
\[
I = Mk^2
\Rightarrow k^2=\frac{5}{4}R^2
\Rightarrow k=\frac{\sqrt{5}}{2}R
\]
Step 6: Substitute $R=0.25$ m:
\[
k=\frac{\sqrt{5}}{2}\times 0.25=\frac{\sqrt{5}}{8}\,\text{m}
\]