Step 1: Formula for Refractive Index in Terms of Angle of Minimum Deviation.
The refractive index \( n \) of a prism can be found using the formula:
\[
n = \frac{\sin\left(\frac{A + D}{2}\right)}{\sin\left(\frac{A}{2}\right)}
\]
Where:
- \( A = 60^\circ \) is the angle of the prism,
- \( D = 30^\circ \) is the angle of minimum deviation.
Step 2: Substituting the Given Values.
Substituting the values of \( A \) and \( D \) into the formula:
\[
n = \frac{\sin\left(\frac{60^\circ + 30^\circ}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)} = \frac{\sin(45^\cir}{\sin(30^\cir}
\]
Step 3: Calculation.
Using known values:
\[
\sin(45^\cir = \frac{\sqrt{2}}{2}, \quad \sin(30^\cir = \frac{1}{2}
\]
\[
n = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}} = \sqrt{2} \approx 1.414
\]
Final Answer:
The refractive index of the prism material is \( \boxed{1.414} \).