Step 1: Apply Stokes' terminal velocity for a sphere
For creeping flow,
\[
v_t=\frac{(\rho_p-\rho_f) g d^2}{18\mu}.
\]
Given \(\rho_p=0.8\ \mathrm{g\,cm^{-3}}=800\ \mathrm{kg\,m^{-3}}\), \(\rho_f=1000\ \mathrm{kg\,m^{-3}}\), \(g=10\ \mathrm{m\,s^{-2}}\), \(d=100\ \mu\mathrm{m}=1\times 10^{-4}\ \mathrm{m}\), \(\mu=10^{-3}\ \mathrm{Pa\,s}\).
Step 2: Compute magnitude
\[
|v_t|=\frac{|800-1000| \times 10 \times (1\times 10^{-4})^2}{18\times 10^{-3}}
=\frac{200\times 10\times 10^{-8}}{18\times 10^{-3}}
=\frac{2\times 10^{-5}}{1.8\times 10^{-2}}
=1.111\dots \times 10^{-3}\ \mathrm{m\,s^{-1}}.
\]
Step 3: Convert to \(\mathrm{mm\,s^{-1}}\) and round
\[
|v_t|=1.111\dots\ \mathrm{mm\,s^{-1}} \approx \boxed{1.11\ \mathrm{mm\,s^{-1}}}.
\]