Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
Two persons are competing for a position on the Managing Committee of an organisation. The probabilities that the first and the second person will be appointed are 0.5 and 0.6, respectively. Also, if the first person gets appointed, then the probability of introducing a waste treatment plant is 0.7, and the corresponding probability is 0.4 if the second person gets appointed.
Based on the above information, answer the following
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
The plot of \( \log_{10} ({BMR}) \) as a function of \( \log_{10} (M) \) is a straight line with slope 0.75, where \( M \) is the mass of the person and BMR is the Basal Metabolic Rate. If a child with \( M = 10 \, {kg} \) has a BMR = 600 kcal/day, the BMR for an adult with \( M = 100 \, {kg} \) is _______ kcal/day. (rounded off to the nearest integer)
For the RLC circuit shown below, the root mean square current \( I_{{rms}} \) at the resonance frequency is _______amperes. (rounded off to the nearest integer)
\[ V_{{rms}} = 240 \, {V}, \quad R = 60 \, \Omega, \quad L = 10 \, {mH}, \quad C = 8 \, \mu {F} \]