A function \(f(x,y)\) is defined such that
\[ f(x, y) = \begin{cases} (x + y)^{0.5} & \text{(the positive root) if } (x + y)^{0.5} \text{ is real} \\ (x + y)^2 & \text{otherwise} \end{cases} \]
\[ g(x, y) = \begin{cases} (x + y)^2 & \text{if } (x + y)^{0.5} \text{ is real} \\ -(x + y) & \text{otherwise} \end{cases} \]
The function \( f(x, y) \) is defined as: \[ f(x,y) = \begin{cases} \sqrt{x+y}, & \text{if } x+y \ge 0 \\ (x+y)^2, & \text{if } x+y < 0 \end{cases} \] The function \( g(x, y) \) is defined as: \[ g(x,y) = \begin{cases} (x+y)^2, & \text{if } x+y \ge 0 \\ -(x+y), & \text{if } x+y < 0 \end{cases} \]
In this case: \[ f(x,y) = \sqrt{x+y}, \quad g(x,y) = (x+y)^2 \] Therefore, \[ f(x,y) - g(x,y) = \sqrt{x+y} - (x+y)^2 \] Now analyze the sign of this difference:
Therefore, for some values where \(0 < x + y < 1\), the difference \( f(x,y) - g(x,y) \) is **positive**.
In this case: \[ f(x,y) = (x+y)^2,\quad g(x,y) = -(x+y) \] So, \[ f(x,y) - g(x,y) = (x+y)^2 + (x+y) \] Let us denote \( s = x + y \), where \( s < 0 \). Then: \[ s^2 + s = s(s + 1) \] This expression depends on the value of \( s \):
Therefore, the difference is **positive** in some negative regions and **negative** in others.
The expression: \[ f(x,y) - g(x,y) \] is **positive** for some values of \(x\) and \(y\), particularly in the range: \[ 0 < x + y < 1 \] which is a clean and reliable interval with consistent positivity.
\[ \boxed{f(x,y) - g(x,y)} \]

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is

In the adjoining figure, PA and PB are tangents to a circle with centre O such that $\angle P = 90^\circ$. If $AB = 3\sqrt{2}$ cm, then the diameter of the circle is
In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: