Step 1: Identify lever arms.
- The pliers act like two levers pivoted at the joint.
- Input force = \(P = 100 \, N\).
- Distance from pivot to input force = 100 mm.
- Distance from pivot to output jaw = 25 mm.
Step 2: Apply principle of moments.
For equilibrium:
\[
\text{Input moment} = \text{Output moment}
\]
\[
P \times L_{in} = F_{jaw} \times L_{out}
\]
Step 3: Substitute values.
\[
100 \times 100 = F_{jaw} \times 25
\]
\[
F_{jaw} = \frac{100 \times 100}{25} = 400 \, N
\]
Step 4: Interpretation.
- Each jaw exerts a force of 400 N on the workpiece.
- The mechanical advantage = \(\dfrac{L_{in}}{L_{out}} = \dfrac{100}{25} = 4\).
Final Answer:
\[
\boxed{400 \, N}
\]