Step 1:
The work done by a variable force is given by the integral of the force over the displacement:
\[
W = \int_{x_1}^{x_2} F(x) \, dx
\]
Substitute the given force \( F(x) = 6x^2 - 4x + 3 \) and limits \( x_1 = 5 \) and \( x_2 = 2 \):
\[
W = \int_{5}^{2} (6x^2 - 4x + 3) \, dx
\]
Step 2:
Now, solve the integral:
\[
\int (6x^2 - 4x + 3) \, dx = 2x^3 - 2x^2 + 3x
\]
Evaluating this from \( x = 5 \) to \( x = 2 \):
\[
W = \left[ 2(2)^3 - 2(2)^2 + 3(2) \right] - \left[ 2(5)^3 - 2(5)^2 + 3(5) \right]
\]
\[
W = \left[ 2(8) - 2(4) + 6 \right] - \left[ 2(125) - 2(25) + 15 \right]
\]
\[
W = \left[ 16 - 8 + 6 \right] - \left[ 250 - 50 + 15 \right]
\]
\[
W = 14 - 215 = 201 \, \text{J}
\]
Thus, the work done by the force is 201 J.