Question:

A force F=αi^+3j^+6k^ \mathbf{F} = \alpha \hat{i} + 3 \hat{j} + 6 \hat{k} is acting at a point r=2i^6j^12k^ \mathbf{r} = 2 \hat{i} - 6 \hat{j} - 12 \hat{k} . The value of α \alpha for which angular momentum about the origin is conserved is:

Show Hint

For angular momentum conservation:
- Torque must be zero: τ=r×F=0 \mathbf{\tau} = \mathbf{r} \times \mathbf{F} = 0 .
- If force acts along position vector, no torque is produced.
Updated On: Mar 29, 2025
  • 2 2
  • 0 0
  • 1 1
  • 1 -1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Step 1: Condition for angular momentum conservation
- Angular momentum L \mathbf{L} is conserved if the net torque τ \mathbf{\tau} is zero.
- Torque is given by:
τ=r×F \mathbf{\tau} = \mathbf{r} \times \mathbf{F} Step 2: Compute the cross-product
\[ \mathbf{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
2 & -6 & -12
\alpha & 3 & 6 \end{vmatrix} \] Expanding along the first row:
τ=i^((6)(6)(12)(3))j^((2)(6)(12)(α))+k^((2)(3)(6)(α)) \mathbf{\tau} = \hat{i} \left( (-6)(6) - (-12)(3) \right) - \hat{j} \left( (2)(6) - (-12)(\alpha) \right) + \hat{k} \left( (2)(3) - (-6)(\alpha) \right) Step 3: Solve for α \alpha
τ=i^(36+36)j^(12+12α)+k^(6+6α) \mathbf{\tau} = \hat{i} (-36 + 36) - \hat{j} (12 + 12\alpha) + \hat{k} (6 + 6\alpha) τ=j^(12+12α)+k^(6+6α) \mathbf{\tau} = -\hat{j} (12 + 12\alpha) + \hat{k} (6 + 6\alpha) For τ=0 \mathbf{\tau} = 0 , the coefficients of j^ \hat{j} and k^ \hat{k} must be zero:
12+12α=0α=1 12 + 12\alpha = 0 \quad \Rightarrow \quad \alpha = -1
Was this answer helpful?
0
0

Questions Asked in VITEEE exam

View More Questions