Step 1: Condition for angular momentum conservation
- Angular momentum L is conserved if the net torque τ is zero.
- Torque is given by: τ=r×FStep 2: Compute the cross-product
\[
\mathbf{\tau} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
2 & -6 & -12
\alpha & 3 & 6
\end{vmatrix}
\]
Expanding along the first row: τ=i^((−6)(6)−(−12)(3))−j^((2)(6)−(−12)(α))+k^((2)(3)−(−6)(α))Step 3: Solve for α τ=i^(−36+36)−j^(12+12α)+k^(6+6α)τ=−j^(12+12α)+k^(6+6α)
For τ=0, the coefficients of j^ and k^ must be zero: 12+12α=0⇒α=−1