We apply the continuity equation:
\[
A_1 v_1 = A_2 v_2
\]
Where:
- \( A_1 = \pi r_1^2 \) and \( A_2 = \pi r_2^2 \)
- \( v_1 = 2 \, \text{m/s} \)
- \( r_1 = 2.5 \, \text{cm} \), \( r_2 = 1.5 \, \text{cm} \)
Substitute the areas and velocities:
\[
6.25 \pi \times 2 = 2.25 \pi \times v_2
\]
Cancel \( \pi \):
\[
12.5 = 2.25 v_2
\]
Solve for \( v_2 \):
\[
v_2 = \frac{12.5}{2.25} = 5.55 \, \text{m/s}
\]
Thus, the velocity at the constriction is 5.55 m/s.