The terminal velocity \( v_t \) of a falling sphere is given by Stokes' law:
\[
v_t = \frac{2r^2 (\rho_{\text{liquid}} - \rho_{\text{air}}) g}{9 \eta}
\]
where:
- \( r = 0.01 \, \text{m} \),
- \( \rho_{\text{liquid}} = 1000 \, \text{kg/m}^3 \) (density of water),
- \( \rho_{\text{air}} = 1.21 \, \text{kg/m}^3 \),
- \( \eta = 1.8 \times 10^{-5} \, \text{Ns/m}^2 \),
- \( g = 9.81 \, \text{m/s}^2 \).
Substituting the given values:
\[
v_t = \frac{2(0.01)^2(1000 - 1.21) \times 9.81}{9 \times 1.8 \times 10^{-5}}
\]
Solving for \( v_t \):
\[
v_t \approx 0.012 \, \text{m/s}
\]
Thus, the terminal velocity is \( 0.012 \, \text{m/s} \).