A drop of water falls through a medium, and we need to find its terminal velocity. The given parameters are:
The terminal velocity \( v_t \) is given by Stokes' law:
$$v_t = \frac{2}{9} \cdot \frac{r^2 (\rho_w - \rho_m) g}{\eta}$$
Substituting the known values:
$$v_t = \frac{2}{9} \cdot \frac{(0.01)^2 \cdot (1000 - 1.21) \cdot 9.81}{1.8 \times 10^{-5}}$$
Calculating inside the equation:
$$v_t = \frac{2}{9} \cdot \frac{0.0001 \cdot 998.79 \cdot 9.81}{1.8 \times 10^{-5}}$$
$$v_t = \frac{2}{9} \cdot \frac{0.9808}{1.8 \times 10^{-5}}$$
$$v_t = \frac{2}{9} \cdot 54488.89$$
$$v_t \approx 0.012 \, \text{m/s}$$
Thus, the terminal velocity of the drop is:
0.012 m/s