Define the following:
(i) Cell potential
(ii) Fuel Cell
(i) Cell potential, also known as the electrode potential or electromotive force (EMF), is the difference in electric potential between two electrodes in a galvanic or electrochemical cell. It is a measure of the ability of a cell to drive an electrochemical reaction and is usually measured in volts (V). The greater the cell potential, the greater the ability of the cell to perform work. The standard cell potential is calculated under standard conditions, typically 25°C, 1 M concentration for solutions, and 1 atm pressure for gases.
(ii) Fuel cell
A fuel cell is an electrochemical device that converts the chemical energy of a fuel (usually hydrogen) and an oxidant (such as oxygen) into electrical energy. This conversion occurs through a redox reaction at the electrodes. The fuel cell operates continuously as long as the fuel and oxidant are supplied, making it a clean and efficient source of power. Common examples include hydrogen fuel cells used in electric vehicles and other energy applications.
(a) Calculate the standard Gibbs energy (\(\Delta G^\circ\)) of the following reaction at 25°C:
\(\text{Au(s) + Ca\(^{2+}\)(1M) $\rightarrow$ Au\(^{3+}\)(1M) + Ca(s)} \)
\(\text{E\(^\circ_{\text{Au}^{3+}/\text{Au}} = +1.5 V, E\)\(^\circ_{\text{Ca}^{2+}/\text{Ca}} = -2.87 V\)}\)
\(\text{1 F} = 96500 C mol^{-1}\)
Calculate the emf of the following cell at 25°C:
\[ \text{Zn(s)} | \text{Zn}^{2+}(0.1M) || \text{Cd}^{2+}(0.01M) | \text{Cd(s)} \] Given: \[ E^\circ_{\text{Cd}^{2+}/\text{Cd}} = -0.40 \, V, \, E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \, V \] \[ [\log 10 = 1] \]
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4:3. Their Balance Sheet as at 31st March, 2024 was as
On $1^{\text {st }}$ April, 2024, Diya was admitted in the firm for $\frac{1}{7}$ share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.
Write chemical equations of the following reactions:
(i) Phenol is treated with conc. HNO\(_3\)
(ii) Propene is treated with B\(_2\)H\(_6\) followed by oxidation by H\(_2\)O\(_2\)/OH\(^-\)
(iii) Sodium t-butoxide is treated with CH\(_3\)Cl
Give a simple chemical test to distinguish between butan-1-ol and butan-2-ol.