The volume of water displaced by the sphere is equal to the volume of the sphere, which is \[ \frac{4}{3} \pi r^3 = \frac{4}{3} \pi (3)^3 = 36 \pi \, \text{cm}^3. \]
The volume displaced will raise the water level in the cylindrical vessel, which has an area of \[ \pi r^2 = \pi (4)^2 = 16 \pi \, \text{cm}^2. \]
The rise in the water level is given by \[ \frac{\text{volume displaced}}{\text{area of the base}} = \frac{36\pi}{16\pi} = \frac{9}{4} \, \text{cm}. \]
On the day of her examination, Riya sharpened her pencil from both ends as shown below. 
The diameter of the cylindrical and conical part of the pencil is 4.2 mm. If the height of each conical part is 2.8 mm and the length of the entire pencil is 105.6 mm, find the total surface area of the pencil.