Step 1: Use the cyclotron frequency formula.
The cyclotron frequency \( f \) is given by:
\[
f = \frac{q B}{2 \pi m},
\]
where \( q = 1.6 \times 10^{-19} \) C (charge of proton), \( m = 1.67 \times 10^{-27} \) kg (mass of proton), and \( f = 20 \) MHz = \( 20 \times 10^6 \) Hz. Solve for the magnetic field \( B \):
\[
B = \frac{2 \pi m f}{q}.
\]
Step 2: Substitute the values and calculate.
\[
B = \frac{2 \pi (1.67 \times 10^{-27}) (20 \times 10^6)}{1.6 \times 10^{-19}}.
\]
First, compute the numerator:
\[
2 \pi (1.67 \times 10^{-27}) (20 \times 10^6) \approx 6.2832 \times 1.67 \times 10^{-27} \times 2 \times 10^7 \approx 2.098 \times 10^{-19}.
\]
Now divide by \( q \):
\[
B = \frac{2.098 \times 10^{-19}}{1.6 \times 10^{-19}} \approx 1.311 \, \text{T}.
\]
This rounds to 1.31 T, matching option (4).
Final Answer: The magnetic field is \( \boxed{1.31 \, \text{T}} \).