To find the magnetic field at a point due to a small current element, we use the Biot-Savart law:
\[ d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{l} \times \vec{r}}{r^3} \]
Where:
Given:
The distance \( r \) is:
\[ r = \sqrt{x^2 + 16} \]
Now, we calculate \( d\vec{B} \):
\[ d\vec{B} = \frac{\mu_0 I}{4 \pi} \frac{dx \, (\hat{i} \times (3 \hat{i} + 4 \hat{j}))}{(x^2 + 16)^{3/2}} \]
The cross product \( \hat{i} \times (3 \hat{i} + 4 \hat{j}) \) simplifies to:
\[ \hat{i} \times (3 \hat{i} + 4 \hat{j}) = 4 \hat{k} \]
Thus,
\[ d\vec{B} = \frac{\mu_0 I}{4 \pi} \frac{4 dx \, \hat{k}}{(x^2 + 16)^{3/2}} \]
To find the total magnetic field, we integrate over the length of the wire element, which extends from \( -0.5 \, \text{cm} \) to \( 0.5 \, \text{cm} \):
\[ B = \int_{-0.5}^{0.5} \frac{\mu_0 I}{4 \pi} \frac{4 dx}{(x^2 + 16)^{3/2}} \]
On solving, the result gives:
\[ B = 1.6 \times 10^{-10} \, \text{T} \]
Thus, the magnetic field at the point is \( 1.6 \times 10^{-10} \, \text{T} \).