Given current density: \( j = \alpha r \)
To find the current from \( r = 0 \) to \( r = \frac{R}{2} \), we integrate over the circular cross-section in cylindrical coordinates:
\[
I = \int_0^{\frac{R}{2}} j \cdot dA = \int_0^{\frac{R}{2}} (\alpha r) \cdot (2\pi r \, dr)
\]
\[
I = 2\pi \alpha \int_0^{\frac{R}{2}} r^2 \, dr = 2\pi \alpha \left[ \frac{r^3}{3} \right]_0^{\frac{R}{2}} = 2\pi \alpha \cdot \frac{1}{3} \cdot \left( \frac{R}{2} \right)^3
\]
\[
I = \frac{2\pi \alpha}{3} \cdot \frac{R^3}{8} = \frac{\pi \alpha R^3}{12}
\]
So, the current is proportional to \( R^3 \).
Final answer: \( R^3 \)