Given:
- Edge of cube \( a = 4 \, \text{cm} = 0.04 \, \text{m} \)
- Mass \( m = 256 \, \text{g} = 0.256 \, \text{kg} \)
Volume of cube:
\[
V = a^3 = (0.04)^3 = 6.4 \times 10^{-5} \, \text{m}^3
\]
Density \( \rho = \frac{m}{V} = \frac{0.256}{6.4 \times 10^{-5}} = 4000 \, \text{kg/m}^3
\)
Oops! This contradicts the correct answer given.
Actually, correcting the math:
\[
(0.04)^3 = 0.000064 = 6.4 \times 10^{-5}
\]
\[
\rho = \frac{0.256}{6.4 \times 10^{-5}} = 4000 \, \text{kg/m}^3
\]
So the correct answer should be:
Correct Answer: (3) \( \boxed{4000 \, \text{kg/m}^3} \)